黃志清 特聘教授

姓     名:黃志清 老師實驗室
英 文 姓 名:Chih-Ching Huang
研 究 專 長:生物感測器及微型分析系統、奈米質譜技術、天然抗癌藥物、抗菌和病毒生物碳、抗凝血奈米複合材料
                      NrUtfqCpjSx7Ua2EZVkLU/view
電 子 信 箱:huanging@mail.ntou.edu.tw
研究室位置:人文社會科學院地下室一樓 
研究室電話:2462-2192 ext. 5526; 5517
 
主要授課課程:
  • 普通化學
  • 分析化學
  • 儀器分析
  • 分析特論
 
學經歷:
  • 學士:國立中正大學 化學系1999
  • 碩士:國立台灣大學 化學系2000
  • 博士:國立台灣大學 化學系2004
  • 博士後研究:國立台灣大學 化學系20062008
  • 助理教授:國立台灣海洋大學 生物科技研究所20082011
  • 副教授:國立台灣海洋大學 生物科技研究所20112014
  • 教授:國立台灣海洋大學 生命科學暨生物科技學系(2014~)
 
研究項目簡介:
  本研究團隊主要研究方向為合成奈米抗凝血與抗腫瘤新生藥物與功能化奈米薄膜於質譜應用。蛋白質保護氧化石墨烯可抑制血管內皮生長因子 (vascular endothelial growth factor, VEGF) 所導致過度血管新生 (Biomaterials 2016)。凝血酶 (thrombin) 為凝血機制中主要的酵素,我們利用兩種凝血酶結合適合體 [thrombin binding aptamer 15 (TBA15) 和thrombin binding aptamer 29 (TBA29)] 自組裝於金奈米粒子 (gold nanoparticles, Au NPs) 可有效抑制凝血酶活性,並證實在小鼠實驗中可延長其凝血時間 (J. Control. Release 2016)。另外,在雷射脫附游離質譜 (laser desorption/ionization mass spectrometry, LDI-MS) 研究中發現,奈米粒子經由脈衝雷射擊打後能進行脫附游離,並可於質譜儀中觀察到奈米團簇 (nanoclusters) 的訊號,除了可應用於定性和定量奈米粒子表面組成,也可應用於奈米薄膜感測器之開發。我們利用表面修飾抗體之Au NPs (AbAu NPs) 與氧化石墨烯複合材料可用於癌組織顯影 (Sci. Rep. 2015)。奈米薄膜修飾適合體後,可有效濃縮循環腫瘤細胞於血液樣品,並藉由LDI-MS分析可測得極低量 (~102 cells) 腫瘤細胞 (ACS Appl. Mater. Interfaces 2015)。將抗菌胜肽自組裝於金奈米量子點上與多胺碳量子點,證實可以於動物實驗中有效抑制多重抗藥性細菌生長 (Adv. Funct. Mater. 2015; ACS Nano 2017)。將適合體修飾金奈米粒子結合到BiOCl所製備的複合奈米材料 (Apt–AuNPs/BiOCl),可經由其仿生催化活性的變化來偵測血管內皮生長因子含量 (Biosens. Bioelectron. 2016)。利用自組裝手性金超分子 (chiral gold supramolecules) 與高效雷射激光吸收對肉鹼 (carnitine) 的特異性識別,探討金屬-配體複合物結構通過LDI-MS定量分析各種待分析物開闢了新途徑 (Anal. Chem. 2018)。近年以固態合成技術調控生物多胺、薑黃素和海藻多醣等聚合與碳化程度,來提升天然分子生物活性。這些研究中提出一相當新穎功能性生物活性碳概念,藉由天然物活性分子轉換成聚合膠體活性碳,將這些聚合分子部分轉化成過度態活性碳可大幅提升其抗菌、抗病毒和抗凝血的生物活性。一步合成自組裝薑黃素碳奈米點 (curcumin-carbon quantum dots) 於抗腸病毒71型治療,動物實驗顯示餵食薑黃素奈米碳點之臨床評分與存活率皆獲得顯著性提升(Small 2019)。我們利用自組裝聚-兒茶素包埋金奈米粒子(poly(catechin) capped-gold nanoparticles)於抗發炎和抗氧化治療,在兔眼模型之乾眼症(dry eye disease)治療顯示具備良好效果且無生物毒性(Nanoscale 2019)。 
 

完整著作: https://scholar.google.com/citations?hl=en&user=Tbub4HwAAAAJ&view_op=list_works&sortby=pubdate

近五年著作 (2016-2020)

  1. C.-L. Hsu, C.-W. Lien, C.-W. Wang, S. G. Harroun, C.-C. Huang* and H.-T. Chang*, 2016: Immobilization of Aptamer-Modified Gold Nanoparticles on BiOCl Nanosheets: Tunable Peroxidase-Like Activity by Protein Recognition Biosens. Bioelectron., 75, 181–187. (IF: 10.257, △: 39) MOST 104-2628-M-019-001-MY3, MOST 103-2627-M-007-002-MY3, and MOST 102-2113-M-019-001-MY3.
  2. S.-S. Huang, S.-C. Wei, H.-T. Chang, H.-J. Lin and C.-C. Huang*, 2016: Gold Nanoparticles Modified with Self-Assembled Hybrid Monolayer of Triblock Aptamers as a Photoreversible Anticoagulant J. Control. Release, 221, 9–17. (IF: 7.727, △: 19) MOST 104-2628-M-019-001-MY3, MOST 103-2627-M-007-002-MY3, and MOST 102-2113-M-019-001-MY3.
  3. C.-W. Wu, S. G. Harroun, C.-W. Lien, H.-T. Chang, B. Unnikrishnan, I. P.-J. Lai, J.-Y. Chang and C.-C. Huang*, 2016: Self-Templated Formation of Aptamer-Functionalized Copper Oxide Nanorods with Intrinsic Peroxidase Catalytic Activity for Protein and Tumor Cell Detection Sens. Actuator B-Chem., 227, 100–107. (IF: 7.100, △: 18) MOST 104-2628-M-019-001-MY3, MOST 103-2627-M-007-002-MY3, and MOST 102-2113-M-019-001-MY3.
  4. I. P.-J. Lai, S. G. Harroun, S.-Y. Chen*, B. Unnikrishnan, Y.-J. Li and C.-C. Huang*, 2016: Solid-State Synthesis of Self-Functional Carbon Quantum Dots for Detection of Bacteria and Tumor Cells Sens. Actuator B-Chem., 228, 465–470. (IF: 7.100, △: 63) MOST 104-2628-M-019-001-MY3, MOST 103-2627-M-007-002-MY3, and MOST 102-2113-M-019-001-MY3.
  5. Y.-T. Tseng, R. Cherng, Z. Yuan, C.-W. Wu, H.-T. Chang* and C.-C. Huang*, 2016: Ultrasound-Mediated Modulation of the Emission of Gold Nanodots Nanoscale, 8, 5162–5169. (IF: 6.895, △: 12) MOST 104-2628-M-019-001-MY3, MOST 103-2627-M-007-002-MY3, and MOST 102-2113-M-019-001-MY3.
  6. L.-H. Peng, B. Unnikrishnan, C.-Y. Shih, T.-M. Hsiung, J. Chang, P.-H. Hsu, T.-C. Chiu* and C.-C. Huang*, 2016: Identification of Microalgae by Laser Desorption/Ionization Mass Spectrometry Coupled with Multiple Nanomatrices Mar. Biotechnol., 18, 283–292. (IF: 2.798, △: 1) MOST 104-2113-M-143-001, MOST 104-2628-M-019-001-MY3, and MOST 103-2627-M-007-002-MY3.
  7. Y.-T. Tseng, R. Cherng, S. G. Harroun, Z. Yuan, T.-Y. Lin, C.-W. Wu, H.-T. Chang* and C.-C. Huang*, 2016: Photoassisted Photoluminescence Fine-Tuning of Gold Nanodots through Free Radical-Mediated Ligand-Assembly Nanoscale, 8, 9771–9779. (IF: 6.895, △: 8) MOST 104-2628-M-019-001-MY3, MOST 104-2113-M-002-008-MY3, MOST 103-2627-M-007-002-MY3, and MOST 102-2113-M-019-001-MY3.
  8. B. Unnikrishnan, C.-W. Wu, I.-W. P. Chen, H.-T. Chang, C.-H. Lin and C.-C. Huang*, 2016: Carbon Dot-Mediated Synthesis of Manganese Oxide Decorated Graphene Nanosheets for Supercapacitor Application ACS Sustain. Chem. Eng., 4, 3008–3016. (IF: 7.632, △: 60) MOST 104-2628-M-019-001-MY3, MOST 104-2622-M-019-001-CC2, and MOST 102-2113-M-019-001-MY3.
  9. Y.-J. Li, S. G. Harroun, Y.-C. Su, C.-F. Huang, B. Unnikrishnan, H.-J. Lin*, C.-H. Lin and C.-C. Huang*, 2016: Synthesis of Self-Assembled Spermidine-Carbon Quantum Dots Effective against Multidrug-Resistant Bacteria Adv. Healthcare Mater., 5, 2545–2554. (IF: 7.367, △: 42) MOST 104-2628-M-019-001-MY3, MOST 104-2622-M-019-001-CC2, MOST 103-2627-M-007-002-MY3, and MOST 102-2113-M-019-001-MY3.
  10. P.-X. Lai, C.-W, Chen, S.-C. Wei, T.-Y. Lin, H.-J. Jian, I. P.-J. Lai, J.-Y. Mao, P.-H. Hsu, H.-J. Lin, W.-S. Tzou, S.-Y. Chen, S. G. Harroun, J.-Y. Lai* and C.-C. Huang*, 2016: Ultrastrong Trapping of VEGF by Graphene Oxide: Anti-angiogenesis Application Biomaterials, 109, 12–22. (IF: 10.317, △: 26) MOST 104-2628-M-019-001-MY3, MOST 103-2314-B-182-013, and MOST 103-2627-M-007-002-MY3, and CMRPD3D0101.
  11. B. Unnikrishnan, C.-Y. Chang, H.-W. Chu, A. Anand and C.-C. Huang*, 2016: Functional Gold Nanoparticles Coupled with Laser Desorption Ionization Mass Spectrometry for Bioanalysis Anal. Methods, 8, 8123–8133. (IF: 2.596, △: 19) MOST 104-2628-M-019-001-MY3, MOST 104-2622-M-019-001-CC2, and MOST 103-2627-M-007-002-MY3.

2017

  1. C.-L. Hsu, C.-W. Lien, S. G. Harroun, R. Ravindranath, H.-T. Chang*, J.-Y. Mao and C.-C. Huang*, 2017: Metal-Deposited Bismuth Oxyiodide Nanonetworks with Tunable Enzyme-Like Activity: Sensing of Mercury and Lead Ions Mat. Chem. Front., 1, 893–899. (IF: 6.788, △: 18) MOST 104-2113-M-002-008-MY3, MOST 104-2628-M-019-001-MY3, MOST 103-2314-B-182-013, and MOST 103-2627-M-007-002-MY3.
  2. J. Yu, Y.-H. Lin, L. Yang, C.-C. Huang, L. Chen, W.-C. Wang, G.-W. Chen, J. Yan, S. Sawettanun and C.-H. Lin*, 2017: Improved Anticancer Photothermal Therapy Using the Bystander Effect Enhanced by Antiarrhythmic Peptide Conjugated Dopamine-Modified Reduced Graphene Oxide Nanocomposite Adv. Healthcare Mater., 6, 1600804. (IF: 7.367, △: 29) MOST 105-2221-E-150-002.
  3. P.-Y. Lai, C.-C. Huang, T.-H. Chou, K.-L. Ou* and J.-Y. Chang*, 2017: Aqueous Synthesis of Ag and Mn Co-Doped In2S3/ZnS Quantum Dots with Tunable Emission for Dual-Modal Targeted Imaging Acta Biomater., 50, 522–533. (IF: 7.242, △: 15) MOST 105-2119-M-011-002.
  4. C.-Y. Chang, H.-W. Chu, B. Unnikrishnan, L.-H. Peng, J. Cang, P.-H. Hsu* and C.-C. Huang*, 2017: Pulse Laser-Induced Generation of Cluster Codes from Metal Nanoparticles for Immunoassay Applications APL Mater., 5, 053403. (IF: 3.819; △: 2) MOST 104-2628-M-019-001-MY3, MOST 104-2622-M-019-001-CC2, and MOST 103-2627-M-007-002-MY3.
  5. Y.-T. Tseng, S. G. Harroun, C.-W. Wu, J.-Y. Mao, H.-T. Chang* and C.-C. Huang*, 2017: Satellite-Like Gold Nanocomposites for Targeted Mass Spectrometry Imaging of Tumor Tissues Nanotheranostics, 1, 141–153. (△: 5) MOST 104-2923-M-002-006-MY3, MOST 104-2113-M-002-008-MY3, and MOST 104-2628-M-019-001-MY3.
  6. J. Yan, L. Chen, C.-C. Huang, S.-C. C. Lung, L. Yang, W.-C. Wang, P.-H. Lin, G. Suo* and C.-H. Lin*, 2017: Consecutive Evaluation of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets Immunotoxicity on Monocytes Colloid Surf. B-Biointerfaces, 153, 300–309. (IF: 4.389, △: 16) MOST 105-2221-E-150-002.
  7. H.-Y. Chang, Y.-T. Tseng, Z. Yuan, H.-L. Chou*, C.-H. Chen, B.-J. Hwang, M.-C. Tsai, H.-T. Chang* and C.-C. Huang*, 2017: The Effect of Ligand–Ligand Interactions on the Formation of Photoluminescent Gold Nanoclusters Embedded in Au(I)–Thiolate Supramolecules Phys. Chem. Chem. Phys., 19, 12085–12093. (IF: 3.430, △: 21) MOST 104-2113-M-002-008-MY3, MOST 104-2923-M-002-006-MY3, and MOST 104-2628-M-019-001-MY3.
  8. J. Yan, C.-H. Lai, S.-C. C. Lung, W.-C. Wang, C.-C. Huang, G.-W. Chen, G. Suo, C.-T. Choug and C.-H. Lin*, 2017: Carbon Black Aggregates Cause Endothelial Dysfunction by Activating ROCK J. Hazard. Mater., 338, 66–75. (IF: 9.038, △: 8) MOST 105-2221-E-150-002 and MOST 104-2221-E-166-001.
  9. J. Yan, C.-C. Huang, S.-C. C. Lung, W.-C. Wang, G. Suo, Y.-J. Lin, C.-H. Lai* and C.-H. Lin*, 2017: ROCK Inhibitor Y-27632 Attenuated Early Endothelial Dysfunction Caused by Occupational Environmental Concentrations of Carbon Black Nanoparticles Environ. Sci.: Nano, 4, 1525–1533. (IF: 7.683, △: 8) MOST 105-2221-E-150-002 and MOST 104-2221-E-166-001.
  10. C.-H. Lai, G.-A. Wang, T.-K. Ling, T.-J. Wang, P.-k. Chiu, Y.-F. C. Chau, C.-C. Huang and H.-P. Chiang*, 2017: Near-Infrared Surface-Enhanced Raman Scattering based on Star-Shaped Gold/Silver Nanoparticles and Hyperbolic Metamaterial Sci. Rep., 7, 5446. (IF: 3.998, △: 46) MOST 102-2221-E-224-069-MY3 and MOST 103-2112-M-019-003-MY3.
  11. H.-J. Jian, R.-S. Wu, T.-Y. Lin, Y.-J. Li, H.-J. Lin, S. G. Harroun, J.-Y. Lai* and C.-C. Huang*, 2017: Super-Cationic Carbon Quantum Dots Synthesized from Spermidine as an Eye Drop Formulation for Topical Treatment of Bacterial Keratitis ACS Nano, 11, 6703–6716. (IF: 14.588, △: 68) MOST 105-2627-M-019-001-MY3, MOST 104-2628-M-019-001-MY3, MOST 105-2622-M-019-001-CC2, MOST 104-2314-B-182-008-MY3, MOST 105-2811-B-182-002, and MOST 105-2811-B-182-008.
  12. C.-H. Lee, Y.-J. Li, C.-C. Huang* and J.-Y. Lai*, 2017: Poly(ε-caprolactone) Nanocapsule Carriers with Sustained Drug Release: Single Dose for Long-Term Glaucoma Treatment Nanoscale, 9, 11754–11764. (IF: 6.895, △: 16) MOST 104-2314-B-182-008-MY3, MOST 105-2811-B-182-002, MOST 105-2811-B-182-008, and CMRPD2C0071-73.
  13. S. G. Harroun, J.-Y. Lai, C.-C. Huang, S.-K. Tsai and H.-J. Lin*, 2017: Reborn from the Ashes: Turning Organic Molecules to Antimicrobial Carbon Quantum Dots ACS Infect. Dis., 3, 777–779. (IF: 4.614, △: 6) MOST 104-2113-M-002-008-MY3, MOST 104-2628-M-019-001-MY3, MOST 105-2627-M-019-001-MY3, and MOST 105-2622-M-019-001-CC2.
  14. H.-W. Chu, J.-Y. Mao, C.-W. Lien, P.-H. Hsu, Y.-J. Li, J.-Y. Lai, T.-C. Chiu* and C.-C. Huang*, 2017: Pulse Laser-Induced Fragmentation of Carbon Quantum Dots: A Structural Analysis Nanoscale, 9, 18359–18367. (IF: 6.895, △: 3) MOST 105-2627-M-019-001-MY3, MOST 105-2622-M-019-001-CC2, and MOST 104-2628-M-019-001-MY3.
  15. J.-Y. Mao, H.-W. Li, S.-C. Wei, S. G. Harroun, M.-Y. Lee, H.-Y. Lin, C.-Y. Chung, C.-H. Hsu, Y.-R. Chen, H.-J. Lin* and C.-C. Huang*, 2017: DNA Modulates the Interaction of Genetically Engineered DNA-Binding Proteins and Gold Nanoparticles: Diagnosis of High-Risk HPV Infection ACS Appl. Mater. Interfaces, 9, 44307–44315. (IF: 8.758, △: 3) MOST 104-2113-M-002-008-MY3, MOST 104-2628-M-019-001-MY3, MOST 105-2627-M-019-001-MY3, and MOST 105-2622-M-019-001-CC2.

2018

  1. C.-W. Lien, B. Unnikrishnan, S. G. Harroun, C.-M. Wang, J.-Y. Chang, H.-T. Chang* and C.-C. Huang*, 2018: Visual Detection of Cyanide Ions by Membrane-Based Nanozyme Assay Biosens. Bioelectron., 102, 510–517. (IF: 10.257, △: 22) MOST 104-2113-M-002-008-MY3, MOST 104-2628-M-019-001-MY3, MOST 105-2627-M-019-001-MY3, and MOST 105-2622-M-019-001-CC2.
  2. A. Anand, B. Unnikrishnan, J.-Y. Mao, H.-J. Lin* and C.-C. Huang*, 2018: Graphene-Based Nanofiltration Membranes for Improving Salt Rejection, Water Flux and Antifouling–A Review Desalination, 429, 119–133. (IF: 7.098, △: 77) MOST 105-2627-M-019-001-MY3, MOST 105-2622-M-019-001-CC2, and MOST 104-2628-M-019-001-MY3.
  3. S.-C. Wei, S. Fan, C.-W. Lien, B. Unnikrishnan, Y.-S. Wang, H.-W. Chu, C.-C. Huang, P.-H. Hsu* and H.-T. Chang*, 2018: Graphene Oxide Membrane as an Efficient Extraction and Ionization Substrate for Spray-Mass Spectrometric Analysis of Malachite Green and Its Metabolite in Fish Samples Anal. Chim. Acta, 1003, 42–48. (IF: 5.977, △: 20) MOST 104-2113-M-002-008-MY3, MOST 104-2628-M-019-001-MY3, MOST 103-2314-B-182-013, and MOST 103-2627-M-007-002-MY3.
  4. P.-C. Kuo, C.-W. Lien, J.-Y. Mao, B. Unnikrishnan, H.-T. Chang, H.-J. Lin* and C.-C. Huang*, 2018: Detection of Urinary Spermine by Using Silver-Gold/Silver Chloride Nanozymes Anal. Chim. Acta, 1009, 89–97. (IF: 5.977, △: 16) MOST 105-2627-M-019-001-MY3, MOST 104-2628-M-019-001-MY3, and MOST 105-2622-M-019-001-CC2.
  5. W. M. Girma, S.-H. Tzing, P.-J. Tseng, C.-C. Huang, Y.-C. Ling and J.-Y. Chang*, 2018: Synthesis of Cisplatin(IV) Prodrug-Tethered CuFeS2 Nanoparticles in Tumor-Targeted Chemotherapy and Photothermal Therapy ACS Appl. Mater. Interfaces, 10, 4590–4602. (IF: 8.758, △: 16) MOST 106-2113-M-011-002.
  6. L.-J. Luo, C.-C. Huang, H.-C. Chen, J.-Y. Lai* and M. Matsusaki*, 2018: Effect of Deacetylation Degree on Controlled Pilocarpine Release from Injectable Chitosan-g-Poly(N-Isopropylacrylamide) Carriers Carbohydr. Polym., 197, 375–384. (IF: 7.182, △: 9).
  7. P.-X. Lai, J.-Y. Mao, B. Unnikrishnan, H.-W. Chu, C.-W. Wu, H.-T. Chang and C.-C. Huang*, 2018: Self-Assembled, Bivalent Aptamers on Graphene Oxide as an Efficient Anticoagulant Biomater. Sci., 6, 1882–1891. (IF: 6.183, △: 8) MOST 104-2628-M-019-001-MY3, MOST 105-2627-M-019-001-MY3, MOST 106-3114-8-019-002, and MOST 107-2918-I-019-004.
  8. Y.-T. Tseng, H.-Y. Chang, S. G. Harroun, C.-W. Wu, S.-C. Wei, Z. Yuan, H.-L. Chou*, C.-H. Chen, C.-C. Huang* and H.-T Chang*, 2018: Self-Assembled Chiral Gold Supramolecules with Efficient Laser Absorption for Enantiospecific Recognition of Carnitine Anal. Chem., 90, 7283–7291. (IF: 6.785, △: 12) MOST 106-2811-M-002-172 and MOST 104-2113-M-002-008-MY3.
  9. J. Yan, S. Hou, Y. Yu, Y. Qiao, T. Xiao, Y. Mei, Z. Zhang, B. Wang, C.-C. Huang, C.-H. Lin* and G. Suo*, 2018: The Effect of Surface Charge on the Cytotoxicity and Uptake of Carbon Quantum Dots in Human Umbilical Cord Derived Mesenchymal Stem Cells Colloid Surf. B-Biointerfaces, 171, 241–249. (IF: 4.389, △: 15) MOST 2017YFA0104301 and MOST 2014CB965003.
  10. C.-L. Hsu, Y.-J. Li, H.-J. Jian, S. G. Harroun, S.-C. Wei, R. Ravindranath, J.-Y. Lai*, C.-C. Huang and H.-T. Chang*, 2018: Green Synthesis of Catalytic Gold/Bismuth Oxyiodide Nanocomposites with Oxygen Vacancies for Treatment of Bacterial Infections Nanoscale, 10, 11808–11819. (IF: 6.895, △: 13) MOST 104-2113-M-002-008-MY3, MOST 104-2923-M-002-006-MY3, MOST 104-2628-M-019-001-MY3, MOST 104-2314-B-182-008-MY3, and MOST 106-2811-B-182-017.
  11. H.-W. Chu, B. Unnikrishnan, A. Anand, J.-Y. Mao and C.-C. Huang*, 2018: Nanoparticle-Based Laser Desorption/Ionization Mass Spectrometric Analysis of Drugs and Metabolites J. Food Drug Anal., 26, 1215–1228. (IF: 4.727, △: 7) MOST 104-2628-M-019-001-MY3, MOST 104-2622-M-019-001-CC2, and MOST 103-2627-M-007-002-MY3.
  12. K. He, S. Chen, C.-C. Huang and L.-Z. Zhang*, 2018: Fluid Flow and Mass Transfer in an Industrial-Scale Hollow Fiber Membrane Contactor Scaled up with Small Elements Int. J. Heat Mass Transf., 127, 289–301. (IF: 4.947, △: 7).

2019

  1. L.-J. Luo, T.-Y. Lin, C.-H. Yao, P.-Y. Kuo, M. Matsusaki, S. G. Harroun, C.-C. Huang* and J.-Y. Lai*, 2019: Dual-Functional Gelatin-Capped Silver Nanoparticles for Antibacterial and Antiangiogenic Treatment of Bacterial Keratitis J. Colloid Interface Sci., 536, 112–126. (IF: 7.489, △: 7) MOST 107-2314-B-182-016-MY3 and MOST 107-2811-B-182-524.
  2. C.-W. Wu, B. Unnikrishnan, Y.-T. Tseng, S.-C. Wei, H.-T. Chang* and C.-C. Huang*, 2019: Mesoporous Manganese Oxide/Manganese Ferrite Nanopopcorns with Dual Enzyme Mimic Activities: A Cascade Reaction for Selective Detection of Ketoses J. Colloid Interface Sci., 541, 75–85. (IF: 7.489, △: 3) MOST 107-2113-M-002-015-MY3, MOST 107-2113-M-019-004-MY3, and 107-2811-M-002-3108.
  3. A. Anand, B. Unnikrishnan, S.-C. Wei, C. P. Chou*, L.-Z. Zhang and C.-C. Huang*, 2019: Graphene Oxide and Carbon Dots as Broad-Spectrum Antimicrobial Agents – A Minireview Nanoscale Horiz., 4, 117–137. (IF: 9.927, △: 31) MOST 107-2113-M-019-004-MY3, MOST 107-2622-M-019-001-CC2, and MOST 107-2627-M-007-007-MY3.
  4. Y.-J. Li, L.-J. Luo, S. G. Harroun, S.-C. Wei, B. Unnikrishnan, H.-T. Chang, Y.-F. Huang, J.-Y. Lai* and C.-C. Huang*, 2019: Synergistically Dual-Functional Nano Eye-Drops for Simultaneous Anti-Inflammatory and Anti-Oxidative Treatment of Dry Eye Disease Nanoscale, 11, 5580–5594. (IF: 6.895, △: 9) MOST 105-2627-M-019-001-MY3, MOST 104-2628-M-019-001-MY3, MOST 105-2622-M-019-001-CC2, MOST 104-2314-B-182-008-MY3, and MOST 106-2811-B-182-017.
  5. T.-X. Lin, P.-X. Lai, J.-Y. Mao, H.-W. Chu, B. Unnikrishnan, A. Anand and C.-C. Huang*, 2019: Supramolecular Aptamers on Graphene Oxide for Efficient Inhibition of Thrombin Activity Front. Chem., 7, 280. (IF: 3.693, △: 3). MOST 107-2622-M-019-001-CC2, MOST 104-2628-M-019-001-MY3, MOST 107-2811-M-019-507, and MOST 106-3114-8-019-002.
  6. H.-W. Chu, C.-S. Lai, J.-Y. Ko, S. G. Harroun, C.-I Chuang, R. Y. L. Wang*, B. Unnikrishnan and C.-C. Huang*, 2019: Nanoparticle-Based LDI-MS Immunoassay for the Multiple Diagnosis of Viral Infections ACS Sens., 4, 1543–1551. (IF: 7.333, △: 6). MOST 106-2627-M-019-001-MY3, MOST 107-2622-M-019-001-CC2, MOST 107-2918-I-019-004, and MOST 107-2113-M-019-004-MY3.
  7. J.-Y. Mao, F.-Y. Lin, H.-W. Chu, S. G. Harroun, J.-Y. Lai, H.-J. Lin* and C.-C. Huang*, 2019: In Situ Synthesis of Core-Shell Carbon Nanowires as a Potent Targeted Anticoagulant J. Colloid Interface Sci., 552, 583–596. (IF: 7.489, △: 1) MOST 106-2627-M-019-001-MY3, MOST 107-2622-M-019-001-CC2, MOST 107-2918-I-019-004, and MOST 107-2113-M-019-004-MY3.
  8. C.-W. Lien, P.-H. Yu, H.-T. Chang, P.-H. Hsu, T. Wu, Y.-W. Lin*, C.-C. Huang and J.-Y. Lai*, 2019: DNA Engineered Copper Oxide-Based Nanocomposites with Multiple Enzyme-Like Activities for Specific Detection of Mercury Species in Environmental and Biological Samples Anal. Chim. Acta, 1084, 106–115. (IF: 5.977, △: 4) MOST 107-2622-B-182-001-CC2, MOST 107-2113-M-019-004-MY3, and MOST 108-2113-M-018-003.
  9. C.-J. Lin, L. Chang, H.-W. Chu, H.-J. Lin, P.-C. Chang, R. Y. L. Wang,* B. Unnikrishnan, J.-Y. Mao, S.-Y. Chen* and C.-C. Huang*, 2019: High Amplification of the Antiviral Activity of Curcumin through Transformation into Carbon Quantum Dots Small, 15, 1902641. (IF: 11.459, △: 5) MOST 107‐2622‐M‐019‐001‐CC2, MOST 107‐2627‐M‐007‐007‐MY3, and MOST 107‐2113‐M‐019‐004‐MY3.
  10. S.-C. Wei, L.-C. Chang, C.-C. Huang* and H.-T. Chang*, 2019: Dual-Functional Gold Nanoparticles with Antimicrobial and Proangiogenic Activities Improve the Healing of Multidrug-Resistant Bacteria-Infected Wounds in Diabetic Mice Biomater. Sci., 7, 4482–4490. (IF: 6.183, △: 4) MOST 107-2113-M-019-004-MY3, MOST 107-2113-M-002-015-MY3, MOST 107-2627-M-007-007-MY3, and MOST 108-2638-M-002-001-MY2.
  11. R. Sakthivel, S. Kubendhiran, S.-M. Chen, T.-W. Chen, N. Al-Zaqri, A. Alsalme, F. A. Alharthi, M. M. A. Khanjer, T.-W. Tseng* and C.-C. Huang*, 2019: Exploring the Promising Potential of MoS2-RuS2 Binary Metal Sulphide Towards the Electrocatalysis of Antibiotic Drug Sulphadiazine Anal. Chim. Acta, 1086, 55–65. (IF: 5.977, △: 1) MOST 107-2113-M-027-005-MY3 and MOST 108-2113-M-027-006.
  12. R. Rajakumaran, S. Ramki, S.-M. Chen*, T.-W. Chen, S. Veerasankar, T.-W. Tseng* and C.-C. Huang*, 2019: Rose-Petal-Like Morphology of Yttrium Molybdate Nanosheets (YMoO4) Anchored on Functionalized Carbon Nanofibers: An Efficient Electrocatalyst for the Electrochemical Sensing of Bisphenol-A Int. J. Electrochem. Sci., 14, 6571–6585. (IF: 1.573, △: 0)
  13. M. Kutty, R. Settu, S.-M. Chen*, T.-W. Chen, T.-W. Tseng*, A. A. Hatamleh, J. Yu, R. Yu, C.-C. Huang*, 2019: An Electrochemical Detection of Vanillin Based on Carbon Black Nanoparticles Modified Screen Printed Carbon Electrode Int. J. Electrochem. Sci., 14, 5972–5983. (IF: 1.573, △: 2)
  14. J.-S. Lin, Y.-W. Tsai, K. Dehvari, C.-C. Huang and J.-Y. Chang*, 2019: A Carbon Dots Based Theranostic Platform for Dual-Modal Imaging and Free Radical Scavenging Nanoscale, 11, 20917–20931. (IF: 6.895, △: 2)
  15. A. Anand, G. Manavalan, R.-P. Mandal, H.-T. Chang, Y.-R. Chiou and C.-C. Huang*, 2019: Carbon Dots for Bacterial Detection and Antibacterial Applications-A Minireview Curr. Pharm. Design, 25, 4848-4860. (IF: 2.208, △: 0)

2020

  1. C.-W. Wu, B. Unnikrishnan, I-W. P. Chen, S. G. Harroun, H.-T. Chang* and C.-C. Huang*, 2020: Excellent Oxidation Resistive MXene Aqueous Ink for Micro-Supercapacitor Application Energy Storage Mater., 25, 563–571. (IF: 16.280, △: 8) MOST 107-2113-M-002-015-MY3, MOST 107-2113-M-019-004-MY3, and MOST 108-2638-M-002-001-MY2.
  2. A. Nain, Y.-T. Tseng, S.-C. Wei, A. P. Periasamy, C.-C. Huang*, F.-G. Tseng* and H.-T. Chang*, 2019: Capping 1,3-Propanedithiol to Boost the Antibacterial Activity of Protein-Templated Copper Nanoclusters J. Hazard. Mater., 389, 121821. (IF: 9.038, △: 0) MOST 107-2113-M-002-015-MY3, MOST 107-2113-M-019-004-MY3, MOST 108-2638-M-002-001-MY2, and NS108-2811-M-002-589.
  3. H.-J. Jian, J, Yu, Y.-J. Li, B. Unnikrishnan, Y.-F. Huang, L.-J. Luo, D, H.-K. Ma, S. G. Harroun, H.-T. Chang, H.-J. Lin, J.-Y. Lai* and C.-C. Huang*, 2020: Highly Adhesive Carbon Quantum Dots from Biogenic Amines for Prevention of Biofilm Formation Chem. Eng. J. 386, 123913. (IF: 10.652, △: 0) MOST 107-2221-E-182-058-MY3, MOST 107-2113-M-019-004-MY3, and MOST 108-2638-M-002-001-MY2.
  4. H.-W. Li, J.-Y. Mao, C.-W. Lien, C.-K. Wang, J.-Y. Lai*, R. P. Mandal, H.-T. Chang, L. Chang, D. H.-K. Ma and C.-C. Huang*, 2020: Platinum Ions Mediate the Interaction between DNA and Carbon Quantum Dots: Diagnosis of MRSA Infections J. Mat. Chem. B, 8, 3506-3512. (IF: 5.344, △: 0) MOST 107-2113-M-019-004-MY3, MOST 107-2627-M-007-007, MOST 107-2221-E-182-058-MY3, and 108-2638-M-002-001-MY2.
  5. T.-T. Wei, S.-A. Chang, R.-J. Lyu, C.-C. Huang, T. Wu and Y.-W. Lin*, 2020: Synthesis of Molybdenum–Silver Orthophosphate Composites for the Visible-Light Photocatalytic Degradation of Various Dyestuff and Phenol J. Mater. Sci.-Mater. Electron., 31, 2177-2189. (IF: 2.220, △: 0) MOST 108-2113-M-018-003.
  6. B. Unnikrishnan, R.-S. Wu, S.-C. Wei, C.-C. Huang* and H.-T. Chang*, 2020: Fluorescent Carbon Dots for Selective Labeling of Subcellular Organelles ACS Omega, 5, 11248-11261. (IF: 2.870, △: 0) MOST 107-2113-M-002-015-MY3, MOST 107-2113-M-019-004-MY3, and MOST 108-2638-M-002-001-MY2.
  7. H.-T. Huang, H.-J. Lin, H.-J. Huang, C.-C. Huang, J. H.-Y. Lin* and L.-L. Chen*, 2020: Synthesis and Evaluation of Polyamine Carbon Quantum Dots (CQDs) in Litopenaeus Vannamei as a Therapeutic Agent Against WSSV Sci. Rep., 10, 1–11. (IF: 3.998, △: 1) MOST 107-2321-B-019-002.
  8. Y.-D. Dai, R.-J. Lyu, T. Wu, C.-C. Huang* and Y.-W. Lin*, 2020: Influences of Silver Halides AgX (X= Cl, Br, and I) on Magnesium Bismuth Oxide Photocatalyst in Methylene Blue Degradation under Visible Light Irradiation J. Photochem. Photobiol. A-Chem., 397, 112585. (IF: 3.306, △: 0) MOST 108-2113-M-018-003.
  9. D. Miscevic, J.-Y. Mao, T. Kefale, D. Abedi, C.-C. Huang, M. Moo-Young and C. P. Chou*, 2020: Integrated Strain Engineering and Bioprocessing Strategies for High-Level Bio-Based Production of 3-Hydroxyvalerate in Escherichia Coli Appl. Microbiol. Biotechnol., 104, 5259–5272. (IF: 3.530, △: 0).
  10. P.-C. Yang, P.-H. Lin, C.-C. Huang, T. Wu* and Y.-W. Lin*, 2020: Determination of Hg(II) Based on the Inhibited Catalytic Growth of Surface-Enhanced Raman Scattering-Active Gold Nanoparticles on a Patterned Hydrophobic Paper Substrate Microchem J., 157, 104983. (IF: 3.594, △: 0) MOST 108-2331-M-018-003.
  11. C.-W. Wu, B. Unnikrishnan, A. P. Periasamy, I-W. P. Chen, Y.-T. Tseng, Y.-Y. Yang, W.-J. Lin, C.-C. Huang* and H.-T. Chang*, 2020: Importance of Cobalt-Doping for Preparation of Hollow CuBr/Co@ CuO Nanocorals on Copper Foils with Enhanced Electrocatalytic Activity and Stability for Oxygen Evolution Reaction ACS Sustain. Chem. Eng., 8, 9794-9802. (IF: 7.632, △: 0) MOST 107-2113-M-002-015-MY3, MOST 107-2113-M-019-004-MY3, and MOST 108-2638-M-002-001-MY2.
  12. A. Nain, Y.-T. Tseng, Y.-S. Lin, S.-C. Wei, R. P. Mandal, B. Unnikrishnan, C.-C. Huang*, F.-G. Tseng* and H.-T. Chang*, 2020: Tuning the Photoluminescence of Metal Nanoclusters for Selective Detection of Multiple Heavy Metal Ions Sens. Actuator B-Chem., 321, 128539. (IF: 7.100, △: 0) MOST 107-2113-M-002-015-MY3, MOST 107-2113-M-019-004-MY3, MOST 108-2638-M-002-001-MY2, and NS108-2811-M-002-589.
  13. J.-Y. Lin, P.-X. Lai,; Y.-C. Sun, C.-C. Huang, C.-K. Su, 2020: Biodistribution of Graphene Oxide Determined Through Post-Administration Labeling with DNA-Conjugated Gold Nanoparticles and ICPMS Anal. Chem., 92, 13997–14005. (IF: 6.785, △: 0)
  14. B. Unnikrishnan, C.-W. Lien, H.-W. Chu and C.-C. Huang*, 2021: A Review on Metal Nanozyme-Based Sensing of Heavy Metal Ions: Challenges and Future Perspectives J. Hazard. Mater. 401, 123397. (IF: 9.038, △: 0) MOST 107-2622-B-182-001-CC2, MOST 107-2113-M-019-004-MY3, MOST 107-2622-M-019-001-CC2, MOST 107-2627-M-007-007-MY3, and MOST 108-2638-M-002-001-MY2.